产品观念是什么:Linux-epoll

来源:百度文库 编辑:偶看新闻 时间:2024/06/12 09:43:38

Linux-epoll

在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。
相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linux/posix_types.h头文件有这样的声明:
#define __FD_SETSIZE    1024
表示select最多同时监听1024个fd,当然,可以通过修改头文件再重编译内核来扩大这个数目,但这似乎并不治本。

epoll的接口非常简单,一共就三个函数:
1. int epoll_create(int size);
创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大。这个参数不同于select()中的第一个参数,给出最大监听的fd+1的值。需要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。


2. int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
epoll的事件注册函数,它不同与select()是在监听事件时告诉内核要监听什么类型的事件,而是在这里先注册要监听的事件类型。第一个参数是epoll_create()的返回值,第二个参数表示动作,用三个宏来表示:
EPOLL_CTL_ADD:注册新的fd到epfd中;
EPOLL_CTL_MOD:修改已经注册的fd的监听事件;
EPOLL_CTL_DEL:从epfd中删除一个fd;
第三个参数是需要监听的fd,第四个参数是告诉内核需要监听什么事,struct epoll_event结构如下:
struct epoll_event {
  __uint32_t events;  /* Epoll events */
  epoll_data_t data;  /* User data variable */
};

events可以是以下几个宏的集合:
EPOLLIN :表示对应的文件描述符可以读(包括对端SOCKET正常关闭);
EPOLLOUT:表示对应的文件描述符可以写;
EPOLLPRI:表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);
EPOLLERR:表示对应的文件描述符发生错误;
EPOLLHUP:表示对应的文件描述符被挂断;
EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。
EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里


3. int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
等待事件的产生,类似于select()调用。参数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。该函数返回需要处理的事件数目,如返回0表示已超时。

--------------------------------------------------------------------------------------------

从man手册中,得到ET和LT的具体描述如下

EPOLL事件有两种模型:
Edge Triggered (ET)
Level Triggered (LT)

假如有这样一个例子:
1. 我们已经把一个用来从管道中读取数据的文件句柄(RFD)添加到epoll描述符
2. 这个时候从管道的另一端被写入了2KB的数据
3. 调用epoll_wait(2),并且它会返回RFD,说明它已经准备好读取操作
4. 然后我们读取了1KB的数据
5. 调用epoll_wait(2)......

Edge Triggered 工作模式:
如果我们在第1步将RFD添加到epoll描述符的时候使用了EPOLLET标志,那么在第5步调用epoll_wait(2)之后将有可能会挂起,因为剩余的数据还存在于文件的输入缓冲区内,而且数据发出端还在等待一个针对已经发出数据的反馈信息。只有在监视的文件句柄上发生了某个事件的时候 ET工作模式才会汇报事件。因此在第5步的时候,调用者可能会放弃等待仍在存在于文件输入缓冲区内的剩余数据。在上面的例子中,会有一个事件产生在RFD句柄上,因为在第2步执行了一个写操作,然后,事件将会在第3步被销毁。因为第4步的读取操作没有读空文件输入缓冲区内的数据,因此我们在第5步调用epoll_wait(2)完成后,是否挂起是不确定的。epoll工作在ET模式的时候,必须使用非阻塞套接口,以避免由于一个文件句柄的阻塞读/阻塞写操作把处理多个文件描述符的任务饿死。最好以下面的方式调用ET模式的epoll接口,在后面会介绍避免可能的缺陷。
   i    基于非阻塞文件句柄
   ii   只有当read(2)或者write(2)返回EAGAIN时才需要挂起,等待。但这并不是说每次read()时都需要循环读,直到读到产生一个EAGAIN才认为此次事件处理完成,当read()返回的读到的数据长度小于请求的数据长度时,就可以确定此时缓冲中已没有数据了,也就可以认为此事读事件已处理完成。

Level Triggered 工作模式
相反的,以LT方式调用epoll接口的时候,它就相当于一个速度比较快的poll(2),并且无论后面的数据是否被使用,因此他们具有同样的职能。因为即使使用ET模式的epoll,在收到多个chunk的数据的时候仍然会产生多个事件。调用者可以设定EPOLLONESHOT标志,在epoll_wait(2)收到事件后epoll会与事件关联的文件句柄从epoll描述符中禁止掉。因此当EPOLLONESHOT设定后,使用带有EPOLL_CTL_MOD标志的epoll_ctl(2)处理文件句柄就成为调用者必须作的事情。


然后详细解释ET, LT:

LT(leveltriggered)是缺省的工作方式,并且同时支持block和no-blocksocket.在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你的,所以,这种模式编程出错误可能性要小一点。传统的select/poll都是这种模型的代表.

ET(edge-triggered)是高速工作方式,只支持no-blocksocket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述符发送更多的就绪通知,直到你做了某些操作导致那个文件描述符不再为就绪状态了(比如,你在发送,接收或者接收请求,或者发送接收的数据少于一定量时导致了一个EWOULDBLOCK 错误)。但是请注意,如果一直不对这个fd作IO操作(从而导致它再次变成未就绪),内核不会发送更多的通知(onlyonce),不过在TCP协议中,ET模式的加速效用仍需要更多的benchmark确认(这句话不理解)。

在许多测试中我们会看到如果没有大量的idle-connection或者dead-connection,epoll的效率并不会比select/poll高很多,但是当我们遇到大量的idle-connection(例如WAN环境中存在大量的慢速连接),就会发现epoll的效率大大高于select/poll。(未测试)



另外,当使用epoll的ET模型来工作时,当产生了一个EPOLLIN事件后,
读数据的时候需要考虑的是当recv()返回的大小如果等于请求的大小,那么很有可能是缓冲区还有数据未读完,也意味着该次事件还没有处理完,所以还需要再次读取:
while(rs)
{
  buflen = recv(activeevents[i].data.fd, buf, sizeof(buf), 0);
  if(buflen < 0)
  {
    // 由于是非阻塞的模式,所以当errno为EAGAIN时,表示当前缓冲区已无数据可读
    // 在这里就当作是该次事件已处理处.
    if(errno == EAGAIN)
     break;
    else
     return;
   }
   else if(buflen == 0)
   {
     // 这里表示对端的socket已正常关闭.
   }
   if(buflen == sizeof(buf)
     rs = 1;   // 需要再次读取
   else
     rs = 0;
}


还有,假如发送端流量大于接收端的流量(意思是epoll所在的程序读比转发的socket要快),由于是非阻塞的socket,那么send()函数虽然返回,但实际缓冲区的数据并未真正发给接收端,这样不断的读和发,当缓冲区满后会产生EAGAIN错误(参考mansend),同时,不理会这次请求发送的数据.所以,需要封装socket_send()的函数用来处理这种情况,该函数会尽量将数据写完再返回,返回-1表示出错。在socket_send()内部,当写缓冲已满(send()返回-1,且errno为EAGAIN),那么会等待后再重试.这种方式并不很完美,在理论上可能会长时间的阻塞在socket_send()内部,但暂没有更好的办法.

ssize_t socket_send(int sockfd, const char* buffer, size_t buflen)
{
  ssize_t tmp;
  size_t total = buflen;
  const char *p = buffer;

  while(1)
  {
    tmp = send(sockfd, p, total, 0);
    if(tmp < 0)
    {
      // 当send收到信号时,可以继续写,但这里返回-1.
      if(errno == EINTR)
        return -1;

      // 当socket是非阻塞时,如返回此错误,表示写缓冲队列已满,
      // 在这里做延时后再重试.
      if(errno == EAGAIN)
      {
        usleep(1000);
        continue;
      }

      return -1;
    }

    if((size_t)tmp == total)
      return buflen;

    total -= tmp;
    p += tmp;
  }

  return tmp;
}  

epoll有两种模式,Edge Triggered(简称ET) 和 LevelTriggered(简称LT).在采用这两种模式时要注意的是,如果采用ET模式,那么仅当状态发生变化时才会通知,而采用LT模式类似于原来的select/poll操作,只要还有没有处理的事件就会一直通知.

以代码来说明问题:
首先给出server的代码,需要说明的是每次accept的连接,加入可读集的时候采用的都是ET模式,而且接收缓冲区是5字节的,也就是每次只接收5字节的数据:

#include #include #include #include #include #include #include #include #include using namespace std;#define MAXLINE 5#define OPEN_MAX 100#define LISTENQ 20#define SERV_PORT 5000#define INFTIM 1000void setnonblocking(int sock){int opts;opts=fcntl(sock,F_GETFL);if(opts<0){perror("fcntl(sock,GETFL)");exit(1);}opts = opts|O_NONBLOCK;if(fcntl(sock,F_SETFL,opts)<0){perror("fcntl(sock,SETFL,opts)");exit(1);}}int main(){int i, maxi, listenfd, connfd, sockfd,epfd,nfds;ssize_t n;char line[MAXLINE];socklen_t clilen;//声明epoll_event结构体的变量,ev用于注册事件,数组用于回传要处理的事件struct epoll_event ev,events[20];//生成用于处理accept的epoll专用的文件描述符epfd=epoll_create(256);struct sockaddr_in clientaddr;struct sockaddr_in serveraddr;listenfd = socket(AF_INET, SOCK_STREAM, 0);//把socket设置为非阻塞方式//setnonblocking(listenfd);//设置与要处理的事件相关的文件描述符ev.data.fd=listenfd;//设置要处理的事件类型ev.events=EPOLLIN|EPOLLET;//ev.events=EPOLLIN;//注册epoll事件epoll_ctl(epfd,EPOLL_CTL_ADD,listenfd,&ev);bzero(&serveraddr, sizeof(serveraddr));serveraddr.sin_family = AF_INET;char *local_addr="127.0.0.1";inet_aton(local_addr,&(serveraddr.sin_addr));//htons(SERV_PORT);serveraddr.sin_port=htons(SERV_PORT);bind(listenfd,(sockaddr *)&serveraddr, sizeof(serveraddr));listen(listenfd, LISTENQ);maxi = 0;for ( ; ; ) {//等待epoll事件的发生nfds=epoll_wait(epfd,events,20,500);//处理所发生的所有事件     for(i=0;i

下面给出测试所用的Perl写的client端,在client中发送10字节的数据,同时让client在发送完数据之后进入死循环, 也就是在发送完之后连接的状态不发生改变--既不再发送数据, 也不关闭连接,这样才能观察出server的状态:
#!/usr/bin/perl

use IO::Socket;

my $host = "127.0.0.1";
my $port = 5000;

my $socket = IO::Socket::INET->new("$host:$port") or die "create socket error $@";
my $msg_out = "1234567890";
print $socket $msg_out;
print "now send over, go to sleep\n";

while (1)
{
    sleep(1);
}
运行server和client发现,server仅仅读取了5字节的数据,而client其实发送了10字节的数据,也就是说,server仅当第一次监听到了EPOLLIN事件,由于没有读取完数据,而且采用的是ET模式,状态在此之后不发生变化,因此server再也接收不到EPOLLIN事件了.

如果我们把client改为这样:
#!/usr/bin/perl

use IO::Socket;

my $host = "127.0.0.1";
my $port = 5000;

my $socket = IO::Socket::INET->new("$host:$port") or die "create socket error $@";
my $msg_out = "1234567890";
print $socket $msg_out;
print "now send over, go to sleep\n";
sleep(5);
print "5 second gonesend another line\n";
print $socket $msg_out;

while (1)
{
    sleep(1);
}

可以发现,在server接收完5字节的数据之后一直监听不到client的事件,而当client休眠5秒之后重新发送数据,server再次监听到了变化,只不过因为只是读取了5个字节,仍然有10个字节的数据(client第二次发送的数据)没有接收完.

如果上面的实验中,对accept的socket都采用的是LT模式,那么只要还有数据留在buffer中,server就会继续得到通知,读者可以自行改动代码进行实验.

基于这两个实验,可以得出这样的结论:ET模式仅当状态发生变化的时候才获得通知,这里所谓的状态的变化并不包括缓冲区中还有未处理的数据,也就是说,如果要采用ET模式,需要一直read/write直到出错为止,很多人反映为什么采用ET模式只接收了一部分数据就再也得不到通知了,大多因为这样;而LT模式是只要有数据没有处理就会一直通知下去的.

补充说明一下这里一直强调的"状态变化"是什么:

1)对于监听可读事件时,如果是socket是监听socket,那么当有新的主动连接到来为状态发生变化;对一般的socket而言,协议栈中相应的缓冲区有新的数据为状态发生变化.但是,如果在一个时间同时接收了N个连接(N>1),但是监听socket只accept了一个连接,那么其它未accept的连接将不会在ET模式下给监听socket发出通知,此时状态不发生变化;对于一般的socket,就如例子中而言,如果对应的缓冲区本身已经有了N字节的数据,而只取出了小于N字节的数据,那么残存的数据不会造成状态发生变化.

2)对于监听可写事件时,同理可推,不再详述.

而不论是监听可读还是可写,对方关闭socket连接都将造成状态发生变化,比如在例子中,如果强行中断client脚本,也就是主动中断了socket连接,那么都将造成server端发生状态的变化,从而server得到通知,将已经在本方缓冲区中的数据读出.

把前面的描述可以总结如下:仅当对方的动作(发出数据,关闭连接等)造成的事件才能导致状态发生变化,而本方协议栈中已经处理的事件(包括接收了对方的数据,接收了对方的主动连接请求)并不是造成状态发生变化的必要条件,状态变化一定是对方造成的.所以在ET模式下的,必须一直处理到出错或者完全处理完毕,才能进行下一个动作,否则可能会发生错误.

另外,从这个例子中,也可以阐述一些基本的网络编程概念.首先,连接的两端中,一端发送成功并不代表着对方上层应用程序接收成功,就拿上面的client测试程序来说,10字节的数据已经发送成功,但是上层的server并没有调用read读取数据,因此发送成功仅仅说明了数据被对方的协议栈接收存放在了相应的buffer中,而上层的应用程序是否接收了这部分数据不得而知;同样的,读取数据时也只代表着本方协议栈的对应buffer中有数据可读,而此时时候在对端是否在发送数据也不得而知.

epoll为什么这么快


epoll是多路复用IO(I/O Multiplexing)中的一种方式,但是仅用于linux2.6以上内核,在开始讨论这个问题之前,先来解释一下为什么需要多路复用IO.

以一个生活中的例子来解释.

假设你在大学中读书,要等待一个朋友来访,而这个朋友只知道你在A号楼,但是不知道你具体住在哪里,于是你们约好了在A号楼门口见面.

如果你使用的阻塞IO模型来处理这个问题,那么你就只能一直守候在A号楼门口等待朋友的到来,在这段时间里你不能做别的事情,不难知道,这种方式的效率是低下的.

现在时代变化了,开始使用多路复用IO模型来处理这个问题.你告诉你的朋友来了A号楼找楼管大妈,让她告诉你该怎么走.这里的楼管大妈扮演的就是多路复用IO的角色.

进一步解释select和epoll模型的差异.

select版大妈做的是如下的事情:比如同学甲的朋友来了,select版大妈比较笨,她带着朋友挨个房间进行查询谁是同学甲,你等的朋友来了,于是在实际的代码中,select版大妈做的是以下的事情:

int n = select(&readset,NULL,NULL,100);

for (int i = 0; n > 0; ++i)
{
   if (FD_ISSET(fdarray[i], &readset))
   {
      do_something(fdarray[i]);
      --n;
   }
}

epoll版大妈就比较先进了,她记下了同学甲的信息,比如说他的房间号,那么等同学甲的朋友到来时,只需要告诉该朋友同学甲在哪个房间即可,不用自己亲自带着人满大楼的找人了.于是epoll版大妈做的事情可以用如下的代码表示:
n=epoll_wait(epfd,events,20,500);
for(i=0;i{
    do_something(events[n]);
}

在epoll中,关键的数据结构epoll_event定义如下:
typedef union epoll_data {
                void *ptr;
                int fd;
                __uint32_t u32;
                __uint64_t u64;
        } epoll_data_t;

        struct epoll_event {
                __uint32_t events;      /* Epoll events */
                epoll_data_t data;      /* User data variable */
        };
可以看到,epoll_data是一个union结构体,它就是epoll版大妈用于保存同学信息的结构体,它可以保存很多类型的信息:fd,指针,等等.有了这个结构体,epoll大妈可以不用吹灰之力就可以定位到同学甲.

别小看了这些效率的提高,在一个大规模并发的服务器中,轮询IO是最耗时间的操作之一.再回到那个例子中,如果每到来一个朋友楼管大妈都要全楼的查询同学,那么处理的效率必然就低下了,过不久楼底就有不少的人了.

对比最早给出的阻塞IO的处理模型, 可以看到采用了多路复用IO之后, 程序可以自由的进行自己除了IO操作之外的工作, 只有到IO状态发生变化的时候由多路复用IO进行通知, 然后再采取相应的操作, 而不用一直阻塞等待IO状态发生变化了.

从上面的分析也可以看出,epoll比select的提高实际上是一个用空间换时间思想的具体应用.

 

 

多进程服务器中,epoll的创建应该在创建子进程之后


看我的测试代码,似乎应该是在创建子进程之后创建epoll的fd,否则程序将会有问题,试将代码中两个CreateWorker函数的调用位置分别调用,一个在创建epollfd之前,一个在之后,在调用在创建之前的代码会出问题,在我的机器上(linux内核2.6.26)表现的症状就是所有进程的epoll_wait函数返回0, 而客户端似乎被阻塞了:

服务器端:

#include #include #include #include #include #include #include #include #include #include #include using namespace std;#define MAXLINE 5#define OPEN_MAX 100#define LISTENQ 20#define SERV_PORT 5000#define INFTIM 1000typedef struct task_t{int fd;char buffer[100];int n;}task_t;int CreateWorker(int nWorker){if (0 < nWorker){bool bIsChild;pid_t nPid;while (!bIsChild){if (0 < nWorker){nPid = ::fork();if (nPid > 0){bIsChild = false;--nWorker;}else if (0 == nPid){bIsChild = true;printf("create worker %d success!\n", ::getpid());}else{printf("fork error: %s\n", ::strerror(errno));return -1;}}else{int nStatus;if (-1 == ::wait(&nStatus)){++nWorker;}}}}return 0;}void setnonblocking(int sock){int opts;opts=fcntl(sock,F_GETFL);if(opts<0){perror("fcntl(sock,GETFL)");exit(1);}opts = opts|O_NONBLOCK;if(fcntl(sock,F_SETFL,opts)<0){perror("fcntl(sock,SETFL,opts)");exit(1);}}int main(){int i, maxi, listenfd, connfd, sockfd,epfd,nfds;ssize_t n;char line[MAXLINE];socklen_t clilen;struct epoll_event ev,events[20];struct sockaddr_in clientaddr;struct sockaddr_in serveraddr;listenfd = socket(AF_INET, SOCK_STREAM, 0);bzero(&serveraddr, sizeof(serveraddr));serveraddr.sin_family = AF_INET;char *local_addr="127.0.0.1";inet_aton(local_addr,&(serveraddr.sin_addr));//htons(SERV_PORT);serveraddr.sin_port=htons(SERV_PORT);// 地址重用int nOptVal = 1;socklen_t nOptLen = sizeof(int);if (-1 == ::setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &nOptVal, nOptLen)){return -1;}setnonblocking(listenfd);bind(listenfd,(sockaddr *)&serveraddr, sizeof(serveraddr));listen(listenfd, LISTENQ);CreateWorker(5);//把socket设置为非阻塞方式//生成用于处理accept的epoll专用的文件描述符epfd=epoll_create(256);//设置与要处理的事件相关的文件描述符ev.data.fd=listenfd;//设置要处理的事件类型ev.events=EPOLLIN|EPOLLET;//ev.events=EPOLLIN;//注册epoll事件epoll_ctl(epfd,EPOLL_CTL_ADD,listenfd,&ev);//CreateWorker(5);maxi = 0;task_t task;task_t *ptask;while(true){//等待epoll事件的发生nfds=epoll_wait(epfd,events,20,500);//处理所发生的所有事件     for(i=0;ifd;if ( (ptask->n = read(sockfd, ptask->buffer, 100)) < 0) {if (errno == ECONNRESET) {close(sockfd);events[i].data.ptr = NULL;} elsestd::cout<<"readline error"<n == 0) {close(sockfd);events[i].data.ptr = NULL;}ptask->buffer[ptask->n] = '\0';cout << "read " << ptask->buffer << endl;//设置用于写操作的文件描述符                                ev.data.ptr = ptask;//设置用于注测的写操作事件ev.events=EPOLLOUT|EPOLLET;//修改sockfd上要处理的事件为EPOLLOUTepoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);}else if(events[i].events&EPOLLOUT){cout << "EPOLLOUT" << endl;ptask = (task_t*)events[i].data.ptr;sockfd = ptask->fd;write(sockfd, ptask->buffer, ptask->n);//设置用于读操作的文件描述符              ev.data.ptr = ptask;//修改sockfd上要处理的事件为EPOLINepoll_ctl(epfd,EPOLL_CTL_DEL,sockfd,&ev);cout << "write " << ptask->buffer;memset(ptask, 0, sizeof(*ptask));close(sockfd);}}}return 0;}
测试客户端:#!/usr/bin/perluse strict;use Socket;use IO::Handle;sub echoclient{my $host = "127.0.0.1";my $port = 5000;my $protocol = getprotobyname("TCP");$host = inet_aton($host);socket(SOCK, AF_INET, SOCK_STREAM, $protocol) or die "socket() failed: $!";my $dest_addr = sockaddr_in($port, $host);connect(SOCK, $dest_addr) or die "connect() failed: $!";SOCK->autoflush(1);my $msg_out = "hello world\n";print "out = ", $msg_out;print SOCK $msg_out;my $msg_in = ;print "in = ", $msg_in;close SOCK;}#&echoclient;#exit(0);for (my $i = 0; $i < 9999; $i++){echoclient;}

我查看了lighttpd的实现,也是在创建完子进程之后才创建的epoll的fd.

请问谁知道哪里有讲解这个的文档?

假如fd1是由A进程加入epfd的,而且用的是ET模式,那么加入通知的是进程B,显然B进程不会对fd1进行处理,所以以后fd1的事件再不会通知,所以经过几次循环之后,所有的fd都没有事件通知了,所以epoll_wait在timeout之后就返回0了。而在客户端的结果可想而知,只能是被阻塞。

也就是说, 这是一种发生在epoll fd上面的类似于"惊群"的现象.

来源1

来源2

天行健,君子当自强不息